
International Journal of Solids and Structures 42 (2005) 4880–4889

www.elsevier.com/locate/ijsolstr
On dynamic stress analysis for cracks
in elastic materials with voids

G. Iovane a,*, M.A. Sumbatyan b

a D.I.I.M.A., University of Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy
b Faculty of Mechanics and Mathematics, Rostov State University, Zorge Street 5, Rostov-on-Don 344090, Russia

Available online 9 March 2005
Abstract

The present paper is concerned with the development of a semi-analytical approach to the dynamic problem of the
concentration of stresses near the edges of a crack located in a porous elastic space (two-dimensional problem) and
subjected to a normal oscillating load applied to the crack faces. Our analysis is made in the context of the Good-
man–Cowin–Nunziato (G–C–N) theory for porous media. In previous work we studied static crack problems for such
materials; now we introduce an analysis of the relevant dynamic aspects. By using the Fourier transform, the problem is
reduced in explicit form to a hyper-singular integral equation with a convolution kernel valid over the crack length.
Then, we apply a collocation technique developed in our previous work to solve this equation, and study the stress
intensity factor. The principal goal is to compare the stress intensity factor for the static and dynamic cases. We also
compare our results with the case of an ordinary linear elastic medium.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The investigation of the dynamical properties of various cracked elastic solids is an important problem in
the practice of ultrasonic inspection of materials, vibrations of engineering structures on elastic founda-
tions, in soil mechanics, seismology and many other fields. Usually, the materials mentioned above can
be correctly described by dynamic equations of classical linear isotropic elastic solids (Achenbach, 1980).
However such materials as soils, composite materials, granular materials, etc., show a specific characteristic
response to the applied dynamic load.
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There is a number of appropriate theories describing dynamic properties of porous materials, and the
most classical one is certainly a Biot consolidation theory of fluid-saturated porous solids (Biot, 1956; Biot
and Willis, 1957). Typically, these theories reduce to ordinary elasticity when the pore fluid is absent. How-
ever, many real materials possess porosity as a dry porous substance, hence Biot�s theory cannot describe
mechanical properties of such voided media. That is why Goodman, Cowin and Nunziato proposed a new
theory, which was developed in detail both for linear and nonlinear materials (Goodman and Cowin, 1972;
Cowin and Nunziato, 1983). This theory is applicable to dry media too. Some static crack problems for
such materials have been studied in our recent works (Iovane et al., 2003; Ciarletta et al., 2003). Puri
and Cowin (1985) studied various types of plane waves, which can propagate in these voided linear elastic
materials. Recently, Chandrasekharaiah (1987) studied a propagation of the Rayleigh surface waves in such
porous media.

In the present work we develop a semi-analytical approach to a dynamic problem concerning concentra-
tion of stresses near the edges of a crack located in the porous elastic space (two-dimensional problem) and
subjected to a normal oscillating load applied to the crack faces. As known from the literature, in the clas-
sical static problem, if a normal load is applied to the faces of the crack, then the shape of the faces near its
edge under this stress can be represented explicitly as a root-square function. This permits an analytical cal-
culation of the stress intensity factor in the classical case. Obviously, stress analysis of the porous materials
is very important in the engineering practice. Some previous results of these authors, carried out in the sta-
tic case, show that the stress intensity factor decreases when compared with the case of ordinary elasticity.
The question, whether this property is valid in the dynamic problem, is not so simple. This requires rather
refined numerical analysis, that is one of the objectives of the present study.

By using the Fourier transform, the problem is reduced in explicit form to a hyper-singular integral
equation with a convolution kernel valid over the crack length. Then we apply a collocation technique
developed in our previous works to solve this equation, and study the stress intensity factor. The principal
goal is to compare the stress intensity factor in the static and dynamic cases. We also compare our results
with the case of ordinary linear elastic medium.

The paper is organized as follows. In Section 2 we give a survey of some previous results; in Section 3 we
transform the problem to a certain hyper-singular integral equation; while, in Section 4 we study the
properties of the kernel of this hyper-singular integral equation and propose a direct numerical approach
to solve it; in Section 5 we formulate the physical conclusions and give a discussion of the obtained
results.
2. Survey of previous results

The theory of linear isotropic elastic materials with voids, in the case of harmonic oscillations when the
dependence on time is taken in the form exp(�iXt), can be described by the following equations of motion
(Puri and Cowin, 1985; Chandrasekharaiah, 1987):
lD�uþ ðkþ lÞgraddiv�uþ bgrad/þ qX2�u ¼ 0; ð2:1aÞ

aD/� n/� bdiv�uþ ðixXþ qkX2Þ/ ¼ 0: ð2:1bÞ

Here X is the angular frequency, �u ¼ fu1; u2; u3g is the displacement vector; / = m � m0, the change in the
volume fraction from the reference volume fraction; k and l, classical elastic moduli; q, the mass density
of the material; D, the Laplacian; a, b, n, x, k, material coefficients related to the porosity. The harmonic
time factor exp(�iXt), which is present in front of all physical quantities, is omitted throughout the paper.

It is obvious that in the case b = 0 the elastic displacement field �u and the ‘‘porosity’’ field / can be sep-
arately determined from Eqs. (2.1a) and (2.1b), respectively.
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The components of the stress tensor can be defined in terms of functions �u and / from the constitutive
equations (Cowin and Nunziato, 1983) (dij is Kronecker�s delta)
rij ¼ kdijekk þ 2leij þ b/dij; eij ¼
1

2
ðui;j þ uj;iÞ; ð2:2Þ
with summation on repeating index.
It can be easily seen that the so-called ‘‘anti-plane’’ problem, where the displacement field is
�u ¼ f0; 0;wðx; yÞg; / ¼ 0; ð2:3Þ

can be trivially reduced to the classical case concerning the waves of horizontal polarization, which is
described by the single standard Helmholtz equation, containing the transverse wave number ks:
Dwþ k2sw ¼ 0; ks ¼
X
c s
; c2s ¼

l
q
: ð2:4Þ
So here we study only the two-dimensional problem in the case of vertical polarization (the so-called
‘‘in-plane’’ problem):
�u ¼ fuðx; yÞ; vðx; yÞ; 0g; / ¼ /ðx; yÞ; ð2:5Þ

for which Eqs. (2.1) become
o
2u
ox2

þ c2
o
2u
oy2

þ ð1� c2Þ o
2v

oxoy
þ H

o/
ox

þ k2pu ¼ 0;

o
2v

oy2
þ c2

o
2v

ox2
þ ð1� c2Þ o

2u
oxoy

þ H
o/
oy

þ k2pv ¼ 0;

o
2/
ox2

þ o
2/
oy2

þ ix
a
Xþ qk

a
X2 � n

a

� �
/� b

a
ou
ox

þ ov
oy

� �
¼ 0:

8>>>>>>>><
>>>>>>>>:

ð2:6Þ
For all that the (non-trivial) components of the stress tensor are expressed in terms of components of the
displacement vector as follows:
rxx

kþ 2l
¼ ou

ox
þ ð1� 2c2Þ ov

oy
þ H/;

ryy

kþ 2l
¼ ð1� 2c2Þ ou

ox
þ ov
oy

þ H/;

rxy

l
¼ ou

oy
þ ov
ox

:

ð2:7Þ
Here in formulas (2.6), (2.7)
kp ¼
X
cp
; c2p ¼

kþ 2l
q

; H ¼ b
kþ 2l

; c2 ¼ c2s
c2p

¼
k2p
k2s

< 1; ð2:8Þ
and cp is the well known longitudinal wave speed.
Fig. 1. A linear crack dislocated in a porous elastic plane, under a uniform harmonically oscillating normal load.
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Let a linear crack of the length 2a be located over the line y = 0 on the interval jxj < a (see Fig. 1). Let an
oscillating normal load of the amplitude �r0 be symmetrically applied to the faces of the crack and there is
no load at infinity. Then, due to the natural symmetry, we can consider only the upper half-plane y P 0,
with the following boundary conditions over the line y = 0:
rxy ¼ 0;
o/
oy

¼ 0 ðj x j< 1Þ; ryy ¼ �r0 ðj x j< aÞ; v ¼ 0 ðj x j> aÞ: ð2:9Þ
It is proved (Atkin et al., 1990) that the boundary condition for the function / (2.9) directly follows from
the principle of energy balance.

Chandrasekharaiah (1987) has shown that Eqs. (2.6) are automatically satisfied if the classical wave
potentials, p and q
u ¼ op
ox

� oq
oy

; v ¼ op
oy

þ oq
ox

ð2:10Þ
satisfy the following equations:
Dqþ k2s q ¼ 0; ð2:11Þ

Dþ k2p
� �

D� 1

l22
þ ix

a
Xþ qk

a
X2

 !
þ H

l21
D

" #
p ¼ 0; ð2:12Þ
where l21 ¼ a=b; l22 ¼ a=n are some physical parameters of dimension of length. Then the function / can be
determined from the equation
�H/ ¼ Dp þ k2pp: ð2:13Þ
Let us introduce the new unknown function g(x) as follows:
vðx; 0Þ ¼
gðxÞ; j x j< a;

0; j x j> a:

�
ð2:14Þ
Obviously, boundary conditions (2.9) in terms of wave potentials p and q, with the use of (2.10), can be
written in the form (y = 0, jxj < 1)
rxy ¼ 0 ) 2
o2p
oxoy

þ o2q
ox2

� o2q
oy2

¼ 0; ð2:15aÞ

o/
oy

¼ 0 ) o

oy
ðDp þ k2ppÞ ¼ 0; ð2:15bÞ

v ¼ gðxÞ ) op
oy

þ oq
ox

¼ gðxÞ: ð2:15cÞ
3. Reducing the problem to integral equation

Let us apply the Fourier transform along x-axis to Eqs. (2.11), (2.12) and to boundary conditions (2.15),
that is to establish a correspondence between the original of any given function f(x,y) and its Fourier image
F(s,y):
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F ðs; yÞ ¼
Z 1

�1
f ðx; yÞeisx dx; f ðx; yÞ ¼ 1

2p

Z 1

�1
F ðs; yÞe�isx ds: ð3:1Þ
Obviously, any derivative o/ox with respect to x is equivalent in Fourier images to a multiplication by the
factor (�is), and the second-order derivative o2/ox2 involves the factor (�s2). Then any partial derivative
with respect to y transforms to a certain ordinary derivative with some parameter s. Note that the Fourier
transform of any function is designated here by corresponding capital letter.

Eqs. (2.11), (2.12) in terms of the Fourier images are
Q00 þ ðk2s � s2ÞQ ¼ 0; ð3:2Þ

k2p þ
d2

dy2
� s2

� �
d2

dy2
� s2 � 1

l22
þ ix

a
Xþ qk

a
X2

 !
þ

"
H

l21

d2

dy2
� s2

� �#
P ¼ 0; ð3:3Þ
and boundary conditions (2.15) (y = 0) are respectively:
2ð�isÞP 0 � s2Q� Q00 ¼ 0; ð3:4aÞ

�s2P þ P 00� �0 þ k2pP
0 ¼ 0; ð3:4bÞ

P 0 � isQ ¼ GðsÞ; GðsÞ ¼
Z a

�a
gðsÞ expðissÞds; ð3:4cÞ
where all ordinary derivatives are applied with respect to variable y, and G(s) is the Fourier transform of
function g(x).

Eqs. (3.2) and (3.3) are ordinary differential equations with constant coefficients; so the well known
method of characteristic polynomials can be used to construct their solution. Its application to Eq. (3.2)
gives ffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
Qðs; yÞ ¼ DðsÞe�c3ðsÞy ; c3ðsÞ ¼ s2 � k2s ; ð3:5Þ
where D(s) is an unknown coefficient. It should be noted, when considering two possible roots of the char-
acteristic second-order algebraic equation, that only the root �c3(s) satisfies Sommerfeld�s radiation condi-

tion. Of course, the principal value of the root-square is taken so that Re½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � k2s

q
� P 0.

The characteristic equation for Eq. (3.3) is directly obtained, if one seeks its solution in the form
P = A exp(vy), that leads to
ðk2p þ v2 � s2Þ½l22ðv2 � s2Þ � 1þ ix�kp þ k�2k2p� þ Nðv2 � s2Þ ¼ 0; ð3:6Þ
or
l22ðs2 � v2Þ2 þ ½1� N � ix�kp � ðl22 þ k�2Þk2p�ðs2 � v2Þ � k2pð1� ix�kp � k�2k2pÞ ¼ 0; ð3:7Þ
where 0 < N ¼ ðl22=l21ÞH < 1 is a dimensionless parameter, and the coefficients x� ¼ xl22cp=a and

k� ¼ l2cp
ffiffiffiffiffiffiffiffiffiffi
qk=a

p
are of dimension of length. The last quadratic equation (3.7) gives for the parameter

k21;2 ¼ s2 � v21;2 the following values:
k21;2 ¼
1

2l22
�½1� N � ix�kp � ðl22 þ k�2Þk2p� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� N � ix�kp � ðl22 þ k�2Þk2p�

2 þ 4l22k
2
pð1� ix�kp � k�2k2pÞ

q� 	
;

ð3:8Þ
that leads to the following representation for the function P:
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P ðs; yÞ ¼ AðsÞe�c1ðsÞy þ BðsÞe�c2ðsÞy ; c1;2ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � k21;2

q
; ð3:9Þ
in accordance with Sommerfeld�s principle, if one takes again the principal value of the root-square.
Now the substitution of functions Q (3.5) and P (3.9) into boundary conditions (3.4) leads to the follow-

ing system of linear algebraic equations with respect to the coefficients A, B, D
2isc1Aþ 2isc2B� ðc23 þ s2ÞD ¼ 0;

c1ðk2p � k21ÞAþ c2ðk2p � k22ÞB ¼ 0;

�c1A� c2B� isD ¼ GðsÞ;

8><
>: ð3:10Þ
whose solution is
AðsÞ ¼ c23 þ s2

c1k
2
s

k2p � k22
k21 � k22

GðsÞ; BðsÞ ¼ c23 þ s2

c2k
2
s

k2p � k21
k22 � k21

GðsÞ; DðsÞ ¼ 2is

k2s
GðsÞ: ð3:11Þ
Further, in order to apply the last two boundary conditions in Eq. (2.9), we should write out the expression
for the stress ryy, which in terms of wave potentials is (see Eqs. (2.7) and (2.10))
ryy

qc2s
¼ k2s p þ 2

o2p
ox2

� o2q
oxoy

� �
) Ryyðs; 0Þ

qc2s
¼ k2s P þ 2 isQ0 � s2P

� �
¼ ðk2s � 2s2Þ½AðsÞ þ BðsÞ� � 2isc3DðsÞ: ð3:12Þ
By using Eq. (3.11), this leads to the following expression for the Fourier transform of the (complex-valued)
amplitude of the normal load over the crack faces, in terms of function G(s):
Ryyðs; 0Þ
qc2s

¼ �LðsÞGðsÞ;

LðsÞ ¼
ð2s2 � k2s Þ

2½ðk2p � k22Þ=c1 � ðk2p � k21Þ=c2� � 4ðk21 � k22Þs2c3
k2s ðk21 � k22Þ

:

ð3:13Þ
Now, by applying the inverse Fourier transform, with the use of the convolution theorem, and taking into
account that the normal stress ryy(x,0), jxj 6 a, is known (see boundary conditions (2.9)), we come to the
integral equation
Z a

�a
gðsÞKðx� sÞds ¼ r0

qc2s
; j x j6 a;

KðxÞ ¼ 1

2p

Z 1

�1
LðsÞe�isx ds ¼ 1

p

Z 1

0

LðsÞ cosðsxÞds:
ð3:14Þ
It can directly be shown that in the case of classical elasticity when N = b = 0, we have
k21 ¼ k2p; k22 ¼ �ð1� ix�kp � k�2k2pÞ=l22, and the Fourier transform of kernel (3.13), function L(s) (the
so-called ‘‘symbolic function’’), reduces to the well known form
LðsÞ ¼ ð2s2 � k2s Þ
2 � 4s2c1c3

k2sc1
; ð3:15Þ
containing the classical Rayleigh function in the numerator. This serves as an additional control of correct-
ness the basic representation (3.13), (3.14).
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4. Some properties of the kernel and numerical treatment

Let us first note that
1

cn
¼ 1

s
þ k2n
2s3

þ 3k4n
8s5

þO
1

s7

� �
; ðn ¼ 1; 2Þ; s ! 1;

c3 ¼ s� k2s
2s

� k4s
8s3

þO
1

s5

� �
; s ! 1;

ð4:1Þ
consequently � �

LðsÞ ¼ Asþ B

s
þO

1

s3
; s ! 1;

A ¼ 2
k2p � k2s

k2s
; B ¼ 3

2
k2s � 2k2p þ

3

2k2s
k2p k21 þ k22
� �

� k21k
2
2

h i
:

ð4:2Þ
Let us study the qualitative properties of the kernel K(x). It is clear that integral (3.14) representing the
kernel does not converge at infinity in any classical sense, since the integrand is unbounded as s ! 1. How-
ever, this can be treated as a generalized function (see Gel�fand and Shilov, 1964). Namely,Z Z Z
KðxÞ ¼ 1

p

1

0

LðsÞ cos sxds ¼ A
p

1

0

s cos sxdsþ B
p

1

0

cos sx� e�s

s
dsþ K0ðxÞ

¼ A
p

lim
e!þ0

Z 1

0

e�ess cosðsxÞds� B
p
ln j x j þK0ðxÞ ¼

A
p

lim
e!þ0

e2 � x2

ðe2 þ x2Þ2
� B

p
ln j x j þK0ðxÞ

¼ � A
px2

� B
p
ln j x j þK0ðxÞ; ð4:3Þ
where K0(x) is a regular (at least differentiable) kernel:� 	

K0ðxÞ ¼

1

p

Z 1

0

½LðsÞ � As� cosðsxÞ � B
cosðsxÞ � e�s

s
ds: ð4:4Þ
Here we have used the table integral (Gradshteyn and Ryzhik, 1994)
Z 1

0

cos sx� e�s

s
ds ¼ � ln j x j : ð4:5Þ
Representation (4.3) shows that the kernel of integral equation (3.14), function K(x), is hyper-singular.
An adequate treatment of hyper-singular integrals and an efficient numerical method to solve such integral
equations can be found in our previous papers (Iovane et al., 2003; Ciarletta et al., 2003). Briefly speaking,
our numerical approach can be described as follows.

First of all, we divide the interval (�a,a) to n small equal subintervals of the length h = 2a/n, by the
nodes �a = t0, t1, t2 , . . . , tn�1, tn = a, tj = �a + jh, j = 0,1, . . . ,n. The central point of each sub-interval
(ti�1, ti) is denoted as xi, hence xi = �a + (i�1/2)h, i = 1, . . . ,n. Then we prove that a correct discrete
approximation to hyper-singular, logarithmic and regular parts of the kernel is given (with a small h) by
the following formulas: � �
Z a

�a

gðsÞds
xi � sð Þ2

�
Xn
j¼1

gðtjÞ
1

xi � tj
� 1

xi � tj�1

;Z a

�a
gðsÞ ln j xi � s j ds �

Xn
j¼1

gðtjÞfj xi � tj j ln j xi � tj j �1

 �

� j xi � tj�1 j ln j xi � tj�1 j �1

 �

g;Z a

�a
gðsÞK0ðxi � sÞds � h

Xn
j¼1

gðtjÞK0ðxi � tjÞ:

ð4:6Þ
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If one substitutes these approximate expressions to the basic integral Eq. (3.14), with the use of Eq. (4.3),
one comes to a regular linear algebraic n · n system with respect to the values gj = g(tj) of the unknown
function g(x) at the nodes. The convergence of such an approach to a bounded solution of the integral
equation as n ! 1, or h ! 0, is proved in (Iovane et al., 2003).

Some examples of the numerical calculations are demonstrated in Figs. 2–4. Here we determine numer-
ically the stress intensity factor K near the tip of the crack, which can be calculated as follows (see Ciarletta
et al., 2003):
Fig. 2.
c2 ¼ c2s
aks = 1

Fig. 3.
c2 ¼ c2s
aks = 0
K � lim
x!aþ0

j ryyðx; 0Þ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p
� lim

x!aþ0

Z a

�a

gðsÞds
ðx� sÞ2

�����
�����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p
: ð4:7Þ
Relative value of the stress intensity factor K to the one in the classical elastic medium (N = 0) versus the coupling number N:
=c2p ¼ k2p=k

2
s ¼ 0:4; a=l2 ¼ 3; x�=a ¼ 0:5; k�=a ¼ 0:8. Line 1: aks = 0, line 2: aks = 0.2, line 3: aks = 0.6, line 4: aks = 0.8, line 5:

.0.

Relative value of the stress intensity factor K to the one in the classical elastic medium (N = 0) versus the coupling number N:
=c2p ¼ k2p=k

2
s ¼ 0:4; a=l2 ¼ 6; x�=a ¼ 0:5; k�=a ¼ 0:8. Line 1: aks = 0, line 2: aks = 0.2, line 3: aks = 0.4, line 4: aks = 0.6, line 5:

.8, line 6: aks = 1.0.



Fig. 4. Relative value of the stress intensity factor K to the one in the static case (X = 0) versus frequency parameter aks:
c2 ¼ c2s=c

2
p ¼ k2p=k

2
s ¼ 0:4; N ¼ 0:5; x�=a ¼ 0:5; k�=a ¼ 0:8. Line 1: a/l2 = 1, line 2: a/l2 = 3, line 3: a/l2 = 6.
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5. Physical conclusions and discussions

We study the dynamic behaviour of porous elastic materials, in frames of the Goodman–Cowin–Nunz-
iato (G–C–N) model. This model contains a number of physical parameters, with a part of them being clas-
sical elastic moduli whose mechanical meaning and typical values are quite clear. Thus, the quantities cp, cs
and kp, ks are the classical longitudinal and transverse wave speeds and wave numbers, respectively, hence
the ratio c2 ¼ c2s=c

2
p ¼ k2p=k

2
s is a certain (classical) positive quantity less than 1. Then, parameter l2 indicates

a certain intrinsic size of the porous medium, certainly this is related to an average size of the voids. Hence,
the (dimensionless) ratio a/l2 determines the relative length of the crack compared with this parameter l2.
The coupling number, N is a positive quantity, whose value is also less than 1. The closer this value to 1 the
higher the porosity of the material.

The G–C–N theory of porous elastic materials is well developed in the general context (see, for
example, Goodman and Cowin, 1972; Cowin and Nunziato, 1983; Atkin et al., 1990). Particularly,
some important energetic properties of such materials, as well as the existence and uniqueness of many
problems in the linear case have been substantiated . But in the context of possible applications there
are too many open questions, and the most important of them is of cause the question concerning the
values of some intrinsic physical parameters. For instance, the physical meaning of two parameters x*,
k* (both of them—of dimension of length), which arise only in the dynamic processes, are less clear in
the present G–C–N model, so we accept their values as for some hypothetical voided elastic media.
One can see from Figs. 2–4, in which degree these parameters influence the stress intensity factor.

An interesting question is also related to the value of the stress intensity factor K, when compared with
the case of static problem and the case of ordinary linear elastic material. In our previous work (Ciarletta
et al., 2003) we showed numerically that the stress intensity factor always grows with increasing of the cou-
pling number N in the static case (compare also with Figs. 2 and 3, line 1). By other words, in the static case
the stress concentration near the tip in the porous material is always higher than the one in the ordinary
elastic material. Here in the dynamic case we can see from Figs. 2 and 3 that the behaviour of this factor
becomes more intricate, and our calculations show that in some cases the stress intensity factor in porous
dynamics can be higher than respective value in the classical material, but in some other cases this decreases
with the porosity increasing. It is not so easy to predict this behaviour a priori, and the exact numerical
simulation only allows us to correctly predict this behaviour.

Another interesting aspect is connected with the question concerning the variation of factor K versus
frequency, when the latter becomes relatively high. Numerous numerical experiments carried out show that
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in the low frequency range the frequency increasing results in higher values of the stress intensity factor
(a typical example is demonstrated in Fig. 4), but with further increase of the frequency this factor
decreases.

At last, we would like to outline the regimes when the stress intensity factor attains its maximum values
that can be very important in applications. Our detailed numerical investigation shows that the maximum
(and so, more dangerous) values of the stress intensity factor near the tip of the crack are attained for lower
values of the porosity (i.e. lower values of N) and for moderate values of the transverse frequency param-
eter aks (approximately, around the value aks � 1). A typical example of calculations is demonstrated in
Fig. 4.
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